翻訳と辞書
Words near each other
・ Q-construction
・ Q-D-Š
・ Q-dance
・ Q-derivative
・ Q-difference polynomial
・ Q-expansion principle
・ Q-exponential
・ Q-exponential distribution
・ Q-Factor (LGBT)
・ Q-Feel
・ Q-FISH
・ Q-Flex
・ Q-Free
・ Q-function
・ Q-Games
Q-gamma function
・ Q-Gaussian distribution
・ Q-Genz
・ Q-go
・ Q-guidance
・ Q-Hahn polynomials
・ Q-in-Law
・ Q-Jacobi polynomials
・ Q-Konhauser polynomials
・ Q-Krawtchouk polynomials
・ Q-Laguerre polynomials
・ Q-LAN
・ Q-learning
・ Q-Less
・ Q-Lets and Co.


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Q-gamma function : ウィキペディア英語版
Q-gamma function

In q-analog theory, the q-gamma function, or basic gamma function, is a generalization of the ordinary Gamma function closely related to the double gamma function. It was introduced by . It is given by
:\Gamma_q(x) = (1-q)^\prod_^\infty
\frac}=(1-q)^\,\frac

when |q|<1, and
: \Gamma_q(x)=\frac)_\infty})_\infty}(q-1)^q^}
if |q|>1. Here (·;·) is the infinite q-Pochhammer symbol. It satisfies the functional equation
:\Gamma_q(x+1) = \frac\Gamma_q(x)=()_q\Gamma_q(x)

For non-negative integers ''n'',
:\Gamma_q(n)=()_q!
where ()''q''! is the q-factorial function. Alternatively, this can be taken as an extension of the q-factorial function to the real number system.
The relation to the ordinary gamma function is made explicit in the limit
:\lim_ \Gamma_q(x) = \Gamma(x).
A q-analogue of Stirling's formula for |q|<1 is given by
: \Gamma_q(x) =()_ \Gamma_\left(\frac 12\right)(1-q)^e^}, \quad 0<\theta<1.
A q-analogue of the multiplication formula for |q|<1 is given by
: \Gamma_\left(\frac n\right)\Gamma_\left(\frac n\right)\cdots\Gamma_\left(\frac n\right) =()_q^\left(()_q \Gamma^2_\left(\frac12\right)\right)^}\Gamma_q(x).
Due to I. Mező, the q-analogue of the Raabe formula exists, at least if we use the q-gamma function when |q|>1. With this restriction
: \int_0^1\log\Gamma_q(x)dx=\frac+\log\sqrt}}+\log(q^;q^)_\infty \quad(q>1).
==References==

*
*
*()
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Q-gamma function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.